Trot or Rot: Survival of the Fittest Hill-Climber Algorithm for Real Robots

Maksym Bondarenko
mb5018C@columbia.edu

Distance Traveled (meters)

Best Distance Over Iterations

—— Best Distance

[+] 2000 4000 6000

Fum Number

8000 10000

Figure 1. Hill Climbing for Quadrupeds. We show how a simple evolutionary algorithm can learn effective walking gaits for real

quadruped robots using minimal computational resources.

Abstract

This report analyzes the use of a simple hill-climber algo-
rithm for learning locomotion in custom quadruped robots,
focusing on accessibility, basic performance optimization,
and practical implementation. We show that even simple
evolutionary methods can yield effective walking gaits in
real robots, making them suitable as a “version 0" solu-
tion for robotics enthusiasts and beginners. We provide in-
sights into hyperparameter tuning and guidance for practi-
cal use, supported by open-source code. This work aims to
lower the barrier to entry for research and experimentation
in resource-constrained, real-world robotics. Our code will
be made publicly available at GitHub and later at a project
website: https://github.com/Lenguist/urdf—
assembly

1. Introduction

Achieving reliable locomotion in quadruped robots is chal-

lenging, especially for those without extensive computa-

tional resources or experience. While reinforcement learn-
ing and other advanced techniques exist, they can be
complicated and resource-heavy. In contrast, a simple
hill-climber algorithm provides a direct, beginner-friendly
method to find basic walking gaits without large compute
budgets or complex infrastructure.

Our primary contributions are:

1. We analyze the hill-climber algorithm’s effectiveness in
generating locomotion strategies for quadruped robots,
focusing on what hobbyists and students can realistically
achieve.

. We provide a complete, open-source implementation,
along with practical tips and parameter-tuning guide-
lines. This lowers the entry barrier, making it easier for
newcomers to start experimenting.

3. We discuss future directions for improvements, includ-

ing ways to further optimize and scale the approach.

https://github.com/Lenguist/urdf-assembly
https://github.com/Lenguist/urdf-assembly

By prioritizing simplicity and real-world feasibility, we
hope to encourage more people to engage with robotics lo-
comotion research, bridging the gap between theory and
hands-on building.

2. Related Work

Hill climbing and evolutionary algorithms have emerged
as powerful techniques for optimization across various do-
mains, particularly in robotics and combinatorial problems.
It is relatively simple, has existed for a long time, and is
highly reliable.

In the domain of quadruped robotics, Kim et al. [3]
demonstrated the potential of evolutionary computation
for gait optimization. Their work introduced foot place-
ment perturbation techniques, showing that evolutionary
approaches can significantly improve locomotion strategies.
Similarly, Jimenez’s thesis [2] compared hill climbing with
policy gradient algorithms for quadruped locomotion, re-
vealing that hill climbing can outperform more complex ap-
proaches in certain scenarios.

Parallel computing research has substantially expanded
the algorithm’s applicability. Yelmewad et al. [5] developed
a Parallel Iterative Hill Climbing (PIHC) algorithm for the
Traveling Salesman Problem (TSP), achieving remarkable
speedups of up to 279x on GPU architectures. O’Neil and
Burtscher [4] further demonstrated the potential of GPU-
based implementations, achieving up to 3x performance im-
provements over existing solvers.

Control selection studies have also validated the algo-
rithm’s effectiveness. Davies et al. [1] found that hill climb-
ing can provide significantly improved search efficiency,
particularly in high-dimensional control spaces. Zhang et
al. [6] proposed a step-size adaptive local search algorithm
that automatically adjusts mutation parameters, addressing
one of hill climbing’s inherent limitations.

Despite these advances, challenges remain. The algo-
rithm’s tendency to get trapped in local optima and its sen-
sitivity to initial conditions are well-documented limita-
tions. As noted in previous literature, hill climbing is inher-
ently “greedy,” focusing on immediate improvements with-
out guaranteeing global optimization.

Our work builds upon these foundational studies by fo-
cusing specifically on quadruped robot locomotion. We
contribute to the existing body of knowledge by:

* Demonstrating a practical application of a hill climber al-
gorithm for learning quadruped gaits

* Providing an analysis of its performance in robotic loco-
motion on resource-constrained systems

* Offering an accessible, beginner-friendly approach to
evolutionary robotics

3. Methodology

3.1. Algorithm Design and Implementation

We implement a hill climbing algorithm to solve qudruped
locomotion problem by fitting a gait function. The algo-
rithm outline follows.

Algorithm 1 Hill Climbing for Quadruped Robot

: Input parameters:

Nmax: Maximum iterations

M Number of parallel candidates

€: Mutation scale factor

P = |w, a, b, c]: Gait parameters vector

EANE - e

6: Prest < U(Pmin, Pmax) {Random initial parameters }
7: dpest + evaluate(Prey) {Distance walked}
8: for i < 1to Nyax/M do

9 /l Mutation Phase: t

10. for j <~ 1to M do

11: 0 ~ U(fePbest, €Pbest)

12: Prjlew — Pbest +6

13: end for

14: /] Evaluation Phase: teyy

15 dpew < parallel_evaluate([PL,,, ..., P2 1)

16: /] Selection Phase: tq
17: if max(dpew) > dpest then

18: Find k where dpew[k] = max(dyew)
19: Py +— P,

20: dpest < dnew[k]

21: end if

22: end for

23: return (Ppegt, dpest)

Where:
* P represents gait parameters:
— w: Gait frequency (rad/s)
— a: Amplitude of sine wave
— b: Phase offset
— c: Vertical offset
* d measures forward distance traveled
* tmuts teval, tsel track computation time
U(a, b) denotes uniform random distribution
* M parallel candidates share total iterations [Vyax

The algorithm consists of three main components:

3.1.1. Mutation

The mutation phase modifies gait parameters including:

* w (frequency): Controls movement speed

* a, b, c (amplitudes): Define joint motion ranges

* Parameters are mutated with probability mutation_rate

3.1.2. Evaluation

Each candidate gait is evaluated in PyBullet simulation
with:

V. e

oo 9
1 'l," Y
\ A

g |
frame 1 frame 2 frame 3
'R 2Ny N
\ A "
frame 4 frame 5 frame 6

Robot Positions Over Time (Best Run)

Average Speed: 0.20 mis
)

Joint 0 Angle Function Joint 2 Angle Function

BN VN N NNV NN

ime (seconds)

Figure 2. Successful Run Visualization. A representative sequence of robot snapshots showing the learned gait. The robot begins from

rest and quickly converges to a stable walking pattern. (Figure 2)

¢ Fixed simulation duration (10 seconds)
 Settling time (0.5 seconds) before measurement
¢ Distance traveled as fitness metric

3.1.3. Selection

The selection process is greedy:

* Keep new parameters if they improve distance
* Otherwise, retain previous best parameters

3.2. Simulation Setup

We use PyBullet for the simulation. The robot is placed on
flat ground and allowed to walk forward for a fixed time
(e.g., 10 seconds) at 240 Hz simulation steps. After a short
settling period, we measure forward displacement. This dis-
tance serves as the fitness metric.

4. Experiments and Results

4.1. Performance Over Iterations

Increasing the number of iterations generally improves the
final gait. Although returns diminish after a certain point,
investing more iterations often leads to smoother, more sta-
ble walking.

4.2. Number of Candidates Per Iteration

We also explored distributing the same number of total eval-
uations across fewer iterations with more candidates per it-
eration. While not implemented in the final version, we
show a hypothetical evaluation script. This approach can
parallelize evaluations, potentially speeding up the search
without sacrificing performance.

Benchmarking Hill Climber Steps

—— Mutation Time (s)
1.0 4 Evaluation Time (s)
—— Selection Time (s)
0.8
m
E 06 1
[¥)
(7]
n
[}
£
F 0.4
0.2
0.0 A

T T
0 200 400

T T T
600 800 1000

Iteration

Figure 3. Timing Breakdown. Average time spent in mutation, evaluation, and selection phases over the course of optimization. Evaluation

dominates overall runtime. (Figure 3)

Performance vs Number of Iterations

BT

Distance Achieved (m)
IS
3

10°
Number of Iterations

Figure 4. Performance vs. Number of Iterations. Distance
achieved increases with more iterations, though we expect im-
provements slow down as we approach a plateau. More testing
is required to observe this.

4.3. Simulation Duration Comparison

We tested durations from 1.25 to 20 seconds and measured
the resulting walking speed rather than raw distance. Short
durations risk noisy evaluations, while long durations sta-
bilize the measurement but cost more computation time.
More testing is required to find the Pareto efficient duration,
but we estimate it will likley be around 20s or more.

Performance vs Candidate Distribution

3

o
e
§ ¥

>
o
&

3

%,
2,

e

Configuration (iterations x candidates)

Figure 5. Iterations vs. Candidates. Comparison of configu-
rations like 1000x1, 500x2, 250x4, and 125x8 (iterations x can-
didates). The figure shows that distributing evaluations differently
can yield similar performance while potentially improving runtime
due to parallelization potential.

5. Discussion and Limitations

Our experiments confirm that a hill-climber algorithm can
produce reasonable quadruped gaits with minimal complex-
ity. However, this approach may struggle in highly complex
environments or with non-flat terrain. The method is also
prone to local optima. Future work could explore paral-
lel evaluation strategies, hybrid methods that combine hill-
climbing with more sophisticated optimization techniques,

Speed vs Si Duration C Time vs Duration

0275

0250 160

0225 140

0200

Speed (m/s)

0175

Total Computation Time (s)

0150

0125

0.100

25 50 75 100 125 150 17.5 200
Simulation Duration (s)

P ot
Figure 6. Duration Comparison. Average walking speed (m/s)
and computation time as a function of simulation duration. While
longer simulations improve stability of evaluation, they come at a
higher computational cost.

or adaptive mutation rates.

6. Conclusions

We have shown that a simple hill-climber algorithm can
learn stable quadruped gaits without requiring significant
computational resources. This makes the approach acces-
sible to hobbyists, students, and resource-constrained de-
velopers, serving as a practical “version 0” solution before
considering more complex methods.

7. Al disclosure

We used ChatGPT and Claude for outlining, LaTeX format-
ting assistance, and suggestions. The main ideas, experi-
ments, and analysis remain our own.

8. Acknowledgements

We thank Prof. Plancher for guidance and Justin Haddad
for assistance in building the physical robot platform.

References

[1] Krispin A. Davies, Alejandro Ramirez-Serrano, Graeme N.
Wilson, and Mahmoud Mustafa. Rapid control selection
through hill-climbing methods. Robotics and Autonomous
Systems, 2019. 2

[2] Antonio R Jimenez. Policy search approaches to reinforce-
ment learning for quadruped locomotion. Master’s thesis,
Massachusetts Institute of Technology, 2004. 2

[3] Jihoon Kim, Dang Xuan Ba, Hoyeon Yeom, and Joonbum
Bae. Gait optimization of a quadruped robot using evolution-
ary computation. Journal of Bionic Engineering, 18:306-318,
2021. 2

[4] Molly A. O’Neil and Martin Burtscher. Rethinking the par-
allelization of random-restart hill climbing: A case study in
optimizing a 2-opt tsp solver for gpu execution. In High Per-
formance Computing Conference, 2020. 2

[5] Pramod Yelmewad, Param Hanji, Amogha Udupa, Parth
Shah, and Basavaraj Talawar. Parallel computing for iterative
hill climbing algorithm to solve tsp. In System Paralleliza-
tion & Architecture Research Conference. National Institute
of Technology Karnataka, 2020. 2

[6] Wenfen Zhang, Yaohui Liu, and Hong Lv. A step-size adap-
tive hill-climbing algorithm for local search. IEEE Transac-
tions on Evolutionary Computation, 2019. 2

	Introduction
	Related Work
	Methodology
	Algorithm Design and Implementation
	Mutation
	Evaluation
	Selection

	Simulation Setup

	Experiments and Results
	Performance Over Iterations
	Number of Candidates Per Iteration
	Simulation Duration Comparison

	Discussion and Limitations
	Conclusions
	AI disclosure
	Acknowledgements

